Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Syst Biol ; 68(5): 781-796, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30816949

RESUMO

Understanding why some groups of organisms are more diverse than others is a central goal in macroevolution. Evolvability, or the intrinsic capacity of lineages for evolutionary change, is thought to influence disparities in species diversity across taxa. Over macroevolutionary time scales, clades that exhibit high evolvability are expected to have higher speciation rates. Cone snails (family: Conidae, $>$900 spp.) provide a unique opportunity to test this prediction because their toxin genes can be used to characterize differences in evolvability between clades. Cone snails are carnivorous, use prey-specific venom (conotoxins) to capture prey, and the genes that encode venom are known and diversify through gene duplication. Theory predicts that higher gene diversity confers a greater potential to generate novel phenotypes for specialization and adaptation. Therefore, if conotoxin gene diversity gives rise to varying levels of evolvability, conotoxin gene diversity should be coupled with macroevolutionary speciation rates. We applied exon capture techniques to recover phylogenetic markers and conotoxin loci across 314 species, the largest venom discovery effort in a single study. We paired a reconstructed timetree using 12 fossil calibrations with species-specific estimates of conotoxin gene diversity and used trait-dependent diversification methods to test the impact of evolvability on diversification patterns. Surprisingly, we did not detect any signal for the relationship between conotoxin gene diversity and speciation rates, suggesting that venom evolution may not be the rate-limiting factor controlling diversification dynamics in Conidae. Comparative analyses showed some signal for the impact of diet and larval dispersal strategy on diversification patterns, though detection of a signal depended on the dataset and the method. If our results remain true with increased taxonomic sampling in future studies, they suggest that the rapid evolution of conid venom may cause other factors to become more critical to diversification, such as ecological opportunity or traits that promote isolation among lineages.


Assuntos
Conotoxinas/genética , Gastrópodes/classificação , Variação Genética , Animais , Evolução Biológica , Gastrópodes/genética , Especiação Genética
2.
Biofouling ; 25(4): 325-33, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19219673

RESUMO

The Titan Acorn barnacle, Megabalanus coccopoma, a native of the tropical eastern Pacific, has become established in the western Atlantic (Brazil and the northern Gulf of Mexico to the Carolinas), northwestern Europe and the western Indian Ocean (Mauritius), and therefore its dispersal capabilities are well known. This study reports its introduction to Japan and confirms its occurrence in Australia. In an attempt to determine the source of this introduction, phylogeographic techniques, involving cytochrome c oxidase I sequences of various widely separate populations of M. rosa and M. volcano, were utilized. No significant genetic differentiation or haplotype patterns between widely separated populations of each of the three species were found. Lack of such differentiation indicates recent geographical isolation and thus negates a null hypothesis predicting that the occurrence of one of more of these species in Australia was natural.


Assuntos
Genética Populacional , Navios , Thoracica/classificação , Thoracica/fisiologia , Animais , Austrália , Biofilmes/crescimento & desenvolvimento , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Haplótipos , Japão , Mitocôndrias/enzimologia , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , Thoracica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...